Nobel Prize for Higgs

On 8 October 2013, the Nobel prize for physics was awarded to Francois Englert and Peter Higgs. In one sense this was a long time coming: the theoretical work that won the prize took place in 1964 (Englert, and his late colleague Robert Brout, working independently of Higgs, published first; a few weeks later Higgs published a paper that explicitly predicted the existence of a scalar boson; another group of physicists – Gerald Guralnik, Carl Hagen and Tom Kibble – published related work later in the same year). In another sense the prize was awarded remarkably quickly: experimental proof of the existence of a fundamental boson was announced on 4 July 2012, and it wasn’t until 14 March 2013 that it was confirmed to be a scalar (spin-0) boson. (If you want to learn more about the Higgs mechanism, you can find a variety of explanations here.)

To my mind, the discovery of the Higgs is one the crowning achievements of human civilisation: it is the culmination of a process that began 2500 years ago with the Greeks. Physicists now have a standard model of fundamental particles: there exists a small number of spin-1/2 point particles (6 quarks; the electron, muon and tau each with their associated neutrino) which interact via the exchange of spin-1 particles that mediate the electroweak and strong (these exchange particles being the photon; W+, W and Z0; 8 gluons). In the ‘pure’ theories underpinning this model the fundamental particles are massless; they acquire mass – and thus in a certain sense their very existence – by interacting with a spin-0 field that pervades the entire universe. This spin-0 field has an associated particle; the Higgs boson. And that’s it. End of story. Except…

We are really just at the beginning of the story. The theories underpinning the standard model are in conflict with the other central pillar of physics: general relativity. The standard model is based on quantum physics; general relativity is a classical theory. Physicists need to develop a quantum theory of gravity. Furthermore, we now know that the standard model applies to only 5% of the universe: 95% of the mass-energy content of the universe resides in the so-called ‘dark’ sector. We desperately need to understand the nature of dark matter and dark energy.

Now that the Large Hadron Collider has discovered the Higgs its next job, when it becomes operational again after its current upgrade, is to shed light on the dark sector.